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Abstract 

Finite element models were developed using LUSAS finite element system to study the vibration 
responce spectrum of apricot to sonic excitation. Apricot was modelled as an spherical and non-spherical 
real shape models consist of skin, flesh and stone or homogeneous material. Simulation results show that 
first six resonant frequencies are associated with mode shapes which perform rigid body motions. These 
frequencies are not affected by the model structure. Higher resonant frequencies are affected by the model 
structure as regards the amplitudes. The frequency peak positions were only slightly changed. The square 
of the second resonant frequency was linearly related to Young's modulus of the fruit. The modelling 
approach and elastic properties were validated using laser doppler vibrometry measurement.  
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Introduction 

A number of methods for quality evaluation of agricultural products have been developed over the past 
several decades. These methods are based on the detection of various physical properties which correlate 
with certain quality factors of the products. Non-destructive optical methods which utilize high-speed 
optical detection and computer data processing are suitable methods (Brozman, 2000). A significant 
amount of research has been conducted on sonic firmness measurement of fruits (Abbott et al. 1968, 
Yamamoto et al. 1980, Armstrong et al. 1997).  
 
In the research presented here, special attention is given to resonant frequency estimation of apricot using 
finite element method. A number of researchers have conducted theoretical analysis to better understand 
the basic principle of dynamic vibrations of the fruit and to determine various factors affecting sonic 
firmness measurement. Cook and Rand (1973) studied the vibrational behavior of apples that were 
considered to be elastic spheres composed of three homogeneous components, the skin, flesh and core. 
They found that there are two classes of vibrational modes in apples, i.e. the spheroidal and torsional. 
Chen and De Baerdemaeker (1993) applied the finite element method to analyze the vibrational modes in 
fruits. They reported that there are three classes of vibrational modes, torsional, the first-type spheroidal 
and the second-type spheroidal. Lu and Abbott (1996) found that the second-type spheroidal modes are 
non-axisymetric and most of the vibrational modes between 0 and 2000Hz belong to this class.  
 
However, in the case of apricot, a better understanding of the vibrations measured by laser doppler 
vibrometry is needed because of the internal structure – flesh, stone. Modal analysis of homogeneous 
elastic spheres that substituted for fruits have been extensively examined in the past by Yong and Bilanski 
(1979) and Kimmel et al. (1992). Wu et al. (1994) developed a finete element model based on geometry 
of real apple and conducted harmonic analysis. Theoretical analysis have been mainly confined to modal 
analyses under free vibration or harmonic responses of fruits without consideration of the actual boundary 
conditions imposed on the fruit. Experimental results showed that vibration response spectrum and 
amplitudes in particular are affected by fruit holding method and location of measurement. It is therefore 
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important to investigate the vibration response spectrum of the fruit under specific experimental set-up 
configuration. 
 
The overall objective of this study is to develope finite element models to study vibration response 
spectrum of apricots under specific holding method and with various apricot internal structure and 
geometry.  
 
Material and Methods 
 
Modal Analysis 

Modal analysis refers to an experimental or analytical procedure applied in vibrational analysis for 
describting the dynamic behaviour of continuous mechanical structure with distributed parameters or 
discrete mechanical structure with lumped parameters. The analysis aims to define the basic deformation 
shapes (mode shapes) of a mechanical structure when excited at one of its natural frequencies.  
 
Since the mathematical formulations for the stated problem are complex and cannot be solved 
analytically, the finite element method (FEM) was used to obtain solution. The general procedure for the 
FEM formulation is documented in many references (e.g. Petyt, 1990, FEA, 1999). The equations of 
dynamic equilibrium of an elastic discretised body can be written in matrix form as 
 
 )(tRuKuCuM =++ &&&        (1) 
 

where ű, ú and u are the acceleration, velocity and displacement vectors respectively, R(t) is the force 
vector, M, C and K are the mass, damping and stiffness matrices respectively.  
 
For natural frequency analysis, we consider the damping C and the external force R(t) both to be zero. 
Each freedom is assumed to excite harmonic motion in phase with all other freedoms 
 
 taa ωsin=  and taa ωω sin2−=&&      (2) 
 
where ω is the circular frequency. Then (2) yields 
 
 ( ) 0=− aMK iλ  where  2

ii ωλ =     (3) 
 
This is equivalent to the generalised eigen-problem defined by 
 
 ΦΛ=Φ MK          (4) 
 
where Λ is a diagonal matrix containingthe eigenvalues λ(i) and Φ contains the corresponding 
eigenvectors φ(i). 
 
Neglecting the trivial solution Φ=0 the values of λ(i) and φ(i) that satisfy equation (4) are defined as the 
eigenvalues and eigenvectors of the problem respectively, which are evaluated using subspace iteration 
(FEA, 1999). The eigenvalues and eigenvectors are the resonant vibrational frequencies and the 
corresponding mode shapes of a structure respectively.  
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Physical Experiment 

In the experiment two groups of eight Barbora apricots of approximately equal size were selected from 
harvested fruit. The measurement of vibration response spectrum was performed by the laser Doppler 
vibrometry. During measurement the apricot was put on the polystyrene base. A more detailed description 
of the instrument and method is given by Brozman (Brozman, 2000). In this way the displacement 
frequency response at the measured point was obtained as a reference for virtual model validation.  
 
Virtual Experiment 

For the virtual experiment an apricot was randomly selected from groups used in laser vibrometry 
measurement. The LUSAS Finite Element System was used to obtain a virtual experiment simulating the 
physical experiment. LUSAS is an associative feature-based modeller. The model geometry is entered in 
terms of features which are sub-divided into finite elements in order to perform analysis. Increasing the 
discretisation of the features will usually result in an increase in accuracy of the solution, but with 
a corresponding increase in solution time and disk space required. The features in LUSAS form 
a hierarchy, that is volumes are comprised of surfaces, which in turn are made up of lines which are 
defined by points. A LUSAS model is a graphical representation consisting of geometric features (points, 
lines, surfaces, volumes) and assigned attributes (materials, loading, supports, mesh).  
 
Two virtual models were developed. An idealized axisymetric (spherical) model and a non-axisymetric 
real shaped model. A model was created with the following modelling considerations: 
• strict basic SI units (N,m,kg) should be used 
• a relatively coarse mesh can be used since stress output is not required 
• no loading was applied to the structure and vibration is due to the mass and stiffness of the structure 

alone 
• eigenvalue control data was included to specify details of the analysis 
• there is no damping in a natural frequency analysis 
 
First, the real size geometric structure of chosen apricot was developed including shape of apricot and 
stone shape and orientation. Secondly, the material properties (isotropic elastic constants) of skin, flesh 
and stone were defined. Mass density of flesh and stone was detrmined as (980 ± 15)kg/m3 and (500 ± 50) 
kg/m3  respectively. E and ε of the apricot specified part were varied during several repeated simulations. 
For skin, flesh and stone the Young’s modulus was estimated from 10MPa to 20MPa, from 1MPa to 
5MPa and from 20MPa to 200MPa respectively. Next, the virtual apricot was discretized into HX20M 
(FEA, 1999) elements. The discretized structure of real shaped apricot model in a wire and solid 
(rendered) view is presented in fig.1. 
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Fig.1 An apricot model meshed by 12300 hexahedral elements in wire and solid view 
 
 
Final step of the virtual model building was defining the modal analysis by application of the eigenvalue 
analysis control parameters which represent a load case. The parameters include: 
• number of calculated eigenvalues that was set to 10 (in some simulation 20) 
• number of starting iteration vector was set to 0 
• subspace iteration method to extract the eigenvalues was chosen as more efective than Guyan 

reduction method for large equation system  
• eigenvalue normalisation was set to mass that is essential for subsequent interactive modal dynamics 

(IMD) analysis (in this case the frequency response function)  
 
The numerical solution produces a series of eigen pairs. The eigenvalues which indicate frequencies at 
which the vibration would naturaly occur are output. The eigenvectors give the associated mode shape of 
vibration. It is important to note that the solved eigenvectors (and hence the resulting mode shape 
displacements) are normalised and hence may be arbitrarily scaled. It is common for the magnitudes of 
these quantities to be investigated by running subsequent modal analyses such as forced (harmonic) or 
spectral response. In this case the resulting eigenvalues were manipulated interactively during results 
processing using the IMD facility.  
 
Results and Discussion 

First finite element simulations were performed on an axisimetric model as a test of structure and analysis 
control. The apricot was considered homogeneous structure of spherical shape of equal material 
properties chosen for simplicity as E = 1MPa, ε = 0.3, ρ = 1000kg/m3. The ten corresponding modes and 
eigenfrequencies were computed. Then the displacement/frequency response by the IMD was generated 
for comparison with next simulations and measurement. The data were extracted for the equatorial node 
of the model that coincides with the measurement point in the experiment. 
 
The first six modes can be described as rigid body motion of various types. Modes 1, 2 and 6 can be 
called wobbling, mode 3 is rigid twist, mode 4 performs bouncing and mode 5 is combination of modes 1 
and 3. The higher order mode shapes perform deformation (bending, torsion). The mode shapes are 
presented in fig.2. 
 
Next, a non-spherical real shape model of apricot was studied during several simulations. The influence 
of apricot skin and stone on resonant frequency was investigated through three simulations of model. In 
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the first simulation, the apricot was considered homogeneous, the skin, flesh and stone had the same 
elastic properties (E=1MPa, ε=0.3). In the second simulation, the skin and stone was assumed to have a 
Young's modulus of 10MPa and 20MPa respectively. In the third simulation was performed by iterative 
methods in which the Young's modulus was gradually changed to fit the measured resonance spectrum. 
The Young's modulus of the flesh was determined to 5MPa and the skin and stone remained the same 
Young's modulus as in second simulation. The shape effect on resonant frequency was examined using 
the first simulation and simulation of the sphere model. A summary of all simulations for the modal 
analysis of apricot models is shown in tab.1 and the displacement/frequency response is shown in fig. 3, 
4.  
 

 
 Mode 1      Mode 4 
 

 
 Mode 6      Mode 7 
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 Mode 8      Mode 10 
 
Fig.2 Examples of vibration mode shapes of apricot model. Modes 1, 4, 6 perform rigid body motion 

and they are presented in comparison with static state (solid line). Next modes are presented in 
deformed states.  

 
Table 1 

 Spherical model Firts simulation Second simulation Third simulation 
Mode Frequency Frequency Frequency Frequency 

1 6.36 6.22 6.24 13.96 
2 15.05 10.68 10.74 24.00 
3 18.05 21.49 21.50 48.08 
4 54.72 58.76 59.61 132.75 
5 54.93 93.60 93.97 209.92 
6 58.75 103.41 103.73 231.79 
7 353.17 335.03 338.28 753.74 
8 364.76 366.29 371.03 822.25 
9 365.37 374.73 380.04 842.60 
10 365.81 376.53 381.85 848.38 

 

Fig.3 Vibration respose spectrum of spherical apricot model 
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Fig.4 Vibration respose spectrum of real shape apricot models 
 
There was obvious from simulations that as the elastic modulus increased, the resonances shifted to 
higher frequencies. Overall, the shapes of the responce spectrums were similar up to the sixth resonant 
frequency, above which the curves showed some different patterns. This indicates that these resonances 
associated with rigid body mode shapes were independent of the elastic material properties and structure 
of the apricot model and was likely to be related to the base material (polystyrene was modelled as spring 
support) and mass of the model.  
 
If the courses of responce spectrums are compared, the presence of skin and stone in the model increases 
the amplitudes of resonant frequencies of higher modes with deformed mode shapes. Changes of the 
resonant frequencies are small (not larger that 2%). This indicates that a homogeneous model is a good 
substitution for real structure model. An ideal shape of model (sphere) had a slightly larger effect to the 
frequency changes but for most of the frequencies not more than 5%.  
Fig.5 shows the relationship between the square of the second resonant frequency (associated with second 
deformed mode shape) and Young's modulus which was obtained from progress of third simulation. 
There is a linear relationship. Although next resonant frequencies also change with Young's modulus, the 
relationship is non-linear. These result demonstrate that the second resonant frequency is a better 
indicator of firmness.  
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Responce spectrum obtained from simulation for Young's modulus of 5MPa aproximately coincide the 
measurement that is presented in fig.6, 7.  
 
 

Fig.5 Relationship between the square of the second resonant frequency and Young's modulus. 
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Fig.6 Simulated vibration response spectrum for apricot model with Young 's modulus of 5MPa. 
 

Fig.7 Measured vibration response spectrum of apricot 
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Conclusions 
Modal analysis by the finite element method was used to study the vibration measurement on apricot and 
to optimize a virtual model of apricot. On the basis of the obtained modal analysis information, such as 
resonant frequencies, Young's modulus estimation, visualisation and animation of the mode shapes, the 
apricot computer model was developed and the laser doppler vibrometry technique can be optimized for 
fruit vibration measurement.  
 
The finite element analysis of differently shaped and internally structured apricots revealed that first six 
vibration modes perform rigid body motions and associated resonant frequencies can not be used for a 
firmness evaluation. The first distinct resonant frequency peaks of high amplitude was observed too at the 
laser doppler vibrometry measurement and it is suitable to omit the corresponding frequency range for 
further measurement. Simulation results showed that resonant frequency associated with second deformed 
mode shape can be used for estimation of the firmness index or Young's modulus because square of this 
frequency has linear dependence on the Young's modulus.  
 
The simulation results further demonstrate that global shape and internal structure generally have little 
influence on the resonant frequencies but the material properties have significant impact on the averall 
pattern of the frequency spectrum. Thus, tuning the resonant frequency to fit the measured resonant 
frequency can be used for mechanical property estimation.  
 
References 
Abbott,J.A., Childers,N.F., Bachman,G.S., Matusik,F.J. (1968). Acoustic vibration for detecting textural 
quality of apples. Proc.Am.Soc.Hort.Sci. 93, 725-737 
 
Armstrong,P.R., Zapp,H.R., Brown,G.K. (1990). Impulse excitation of acoustic vibrations in apples for 
firmness determination. Transaction of the ASAE 33(4), 1353-1359. 
 
Brozman,D., Kubik,L. (2000). Measurement of mechanical properties of apples by laser doppler 
vibrometry. Res. Agr. Eng., 46, 2000 (4), 139-143. 
 
Chen,H., De Baerdemaeker,J. (1993). Modal analysis of the dynamic behavior of pineapples and its 
relation to fruit fermness. Transaction of the ASAE, 36, 1439-1444. 
 
Cooke,J.R., Rand,R.H. (1973). A mathematical study of resonance in intact fruits and vegetables using a 
three-media elastic sphere model. J. Agri. Eng. Res., 18(2), 141-157. 
 
Kimmel,E., Peleg,K., Hinga,S. (1992). Vibration modes of spheroidal fruits. J. Agri. Eng. Res., 52, 201-
213. 
 
Lu,R., Abbott,J.A. (1996). Finite element analysis of modes of vibration in apples. J.Texture Studies 
27(3), 265-286. 
 
Petyt,M. (1990). Introduction to finite element vibration analysis. Cambridge,U.K., Cambridge university 
press. 
 
Yamamoto,H., Iwamoto,M., Haginuma,S. (1980). Acoustic impulse response method for measuring 
natural frequency of fruits. J.Texture Studies 11(2), 117-136. 
 



   
 264  

 
   

Research and Teaching of Physics in the Context of University Education Nitra, June 5 and 6, 2007 
 

 

Yong,Y., Bilanski,W. (1979). Modes of vibration of spheroids at the first and second resonance 
frequencies. Transactions of the ASAE, 1463-1466. 
 
Wu,N., Pitts,M.J., Davis,D.C. (1994). Modelling mechanical behavior of apple with the finite element 
method. ASAE p. No.94-3585. St.Joseph,Mich.:ASAE 
 
Contact address: Assoc.Prof. Dusan Brozman, Department of Physics, Slovak Agricultural University, 
Tr.A. Hlinku 2, 949 76 Nitra, Slovak Republic.  
phone: 00421 37 6508 878, fax: 00421 37 7417 003, e-mail: brozman@afnet.uniag.sk 
 


	Tlačítko1: 


