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THE PRINCIPLE OF QUOTIENT IN THE COURSE OF DISCRETE  
MATHEMATICS  

 
 

Václav Nýdl,  Klára Drsová, ČR 
 

 
Abstract. The course of Discrete Mathematics is one of the basics of every study program 
connected to computer science. Due to different high school backgrounds, the students 
coming to the university possess a very diverse knowledge of combinatorics. Here, we have 
described an example of a methodological approach resulting in the leveling of student 
understanding in this area.  
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Introduction 

In the article, we have summarized our experience from teaching Discrete Mathematics 
(the lectures and the seminars to the lectures) at the University of South Bohemia in the  
Czech Republic. We are especially interested in the point of view of the students in solving 
combinatorial word problems (see the classical book [7], for example). These problems are 
very often supposed to be non-standard tasks and the students think that one can solve them 
only if he or she only knows some special ‘tricks’. 

Our students were surprised when it was explained to them that combinatorics is a 
legitimate mathematical discipline with its own terminology, theoretical background, general 
theorems and formulas, and its own standard procedures; (the existence of the handbook [2], 
[3] was a great surprise to many of them). Here, we have demonstrated a piece of our 
successful approach. 

 
Material and methods 

Throughout the paper, we work with finite sets. If X is a set then we denote the size of X by 
| X |, the set of all ordered pairs [a, b] of elements of X by X×X (the cartesian square of X), 
the set of all subsets of X by P(X) (the power set of X), and the set of all subsets of X of size 
equal to k by P k (X). The system { jX  ; j∈ J } of nonempty subsets of X is called a partition 

of X, if it is pair-wise disjoint and their union equals X. Moreover, if the size of all partition 
classes equals k we talk about k-partition.  
The Quotient Principle.  If { jX  ; j∈ J } is a k-partition of X into | J | nonempty classes. Then 

| J | = 
k

X ||
  

The proof is evident because X is divided into | J | parts of the same size k, i.e. | X |=| J |· k. 
    For a mapping, we use the standard notation f: X →Y; f(a) is the image of element a ∈ X,  
f(S) is the image of subset S ⊆  X. The composite mapping of two mappings f and g (if is 
exists) is denoted by go f and it works as follows:  (go f) (a) = g(f(a)). If mapping f : X →Y is 
a one-to-one correspondence we call it a bijection. If both X and Y have the size of n then the 
number of bijections from X to Y equals n!. The composition of two bijections is a bijection as 
well. The inverse 1−f of a bijection f is a bijection, too. We deal with four kinds of objects 
(see [1], for example): 

a colored set  O = 〈 X, χ 〉   where χ : X →C is a mapping (C is called the set of 
colors, the imageχ (a) is called the color of element a in object O), 
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a directed graph  O = 〈 X, R〉 where R is a subset of X×X  (the elements of R have the 
form of [a, b] and are called arrows) , 

an undirected graph  O = 〈 X, R〉 where R is a subset of P 2 (X)  (the elements of R 
have the form of {a, b} and are called edges),  

a partition  O = 〈 X, R〉 where R is a partition of X (the elements of R are subsets of X  
and they are called partition classes) . 
Definition. Let O be an object on X and let f : X →Y  be a bijection. The f-copy of object O 
denoted by f(O) is the object on Y of the same kind as O described as follows:  
    if  O = 〈 X, χ 〉   is a colored set with  coloring χ : X →C  then f(O) = 〈 Y, χ o

1−f 〉   

where χ o
1−f : Y →  C  is the coloring of  f(O), 

    if  O = 〈 X, R〉  is a directed graph then f(O) = 〈 X, fR 〉  where fR  consists of all arrows of 

the form [f(a),  f(b)] provided [a, b] ∈R, 
    if  O = 〈 X, R〉  is an undirected graph then f(O) = 〈 X, fR 〉  where fR  consists of all edges 

of the form {f(a),  f(b)} provided {a, b} ∈R, 
    if  O = 〈 X, R〉  is a partition then f(O) = 〈 X, fR 〉  where fR  consists of all partition classes 

of the form f( jX ) provided jX  is a partition class of  O. 

If  2O = f ( 1O ) we say that 1O and 2O  are isomorphic objects and f  is called an isomorphism. 
An isomorphism of an object O to itself is called an automorphism and we denote by aut(O) 
the number of automorphisms of O. 
    Main Theorem. Let X and Y be two sets of the same size n, let O be an object on X. If  the 
number of distinct copies of O on Y is denoted by copy(O),  then       

copy(O) = 
)(aut

!

O

n
 

    Outline of proof  (see [5] for more details).  Let G be the set of all automorphisms of O 
 (it means that |G| = aut(O)), and let F be the set of all bijections f : X →Y  (it means that  
|F| = n!). The relation ~ on F is defined as follows: 1f  ~ 2f  if and only if 1f (O) = 2f (O). It is 
obvious that ~ is reflexive, symmetric, and transitive; thus it is an equivalence relation which 
defines a partition of F into equivalence classes {jF  ; j∈ J }. The number of classes | J | 

equals the number of distinct copies of O on Y, i.e. copy(O) =  | J |. Choose a classjF  and a 

bijection 0f ∈ jF . Now, define mapping β : jF  →G  as  β (f) = 1
0
−f o f.  It follows 

immediately from the definition ofβ and from the choice of0f  thatβ  is a bijection and 

therefore | jF | = |G| = aut(O) for every j∈ J. We apply The Quotient Principle on k-partition 

{ jF  ; j∈ J } of F with k = aut(O) which yields: 

copy(O) = | J |  = 
k

F ||
 = 

)(aut

!

O

n
 

Note. The proof shows that the number copy(O) does not depend on the choice of set Y. 
 
Results and discussion 
On 4 examples of counting problems, we demonstrate the use of The Quotient Principle in the 
form of the Main Theorem emphasizing its generality. Since it always requires determining 
the value of aut(O) for a specific object O we concentrate on this problem. Also, we use The 
Multiplication Counting Principle which, in fact, says that | X×Y | = | X |·| Y | (holding for 
more than 2 sets as well). Below, the notation I[n] = {1, 2, …, n} for the intervals of the first 
n natural numbers is frequently exploited.   
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Example 1.  Explaining the meaning of binomial coefficients.  
Chosen m, n,  0≤ m ≤ n. The object will be colored set O = 〈 I[n], χ 〉  whereχ (a) = white for 
a ≤ m, andχ (a) = black for  a >m. Thus, I[n] is divided into two unicolor parts, the ‘white’ 
and the ‘black’ one, i.e.  I[n] = W∪ B, |W| = m (the white color chooses the m-element subset 
S = {1,2, …,m} of I[ n]). Every automorphism f of O must preserve the colors. Thus, f(W) = W 
(there are m! such partial bijections), and f(B) = B (there are ( mn − )! such partial bijections). 
Using the Multiplication Counting Principle we obtain aut(O) = m! · ( mn − )! and finally 

copy(O) =  
)(aut

!

O

n
 = 

 )! ( · !

!

mnm

n

−
=  









m

n
 

It means that every copy of O on an n-element set Y chooses some m-element subset of Y and 
the number of copies is the size of P m (Y).  We have shown that the above binomial 

coefficient calculates the number of m-element subsets of any n-element set Y. 
 

 The picture on the right shows the case n = 6  and   m = 4  
(4 white elements and 2 black elements in I[6] are chosen). 
All 4-element subsets in any n-element set Y are obtained as 

copies of this object and the number of them is 








4

6
 = 15. 

 
 

                                                  
Example 2 (Combinatorics).  The number of cyclic permutations. 
Chosen n ≥  2. The object will be directed graph O = 〈 I[n], R〉  where R = {[ i, i +1]; i < n} ∪   
{[ n, 1]}. Now, every automorphism f of O is uniquely determined by the image of f(1) which 
has n different possibilities, so aut(O) = n. Using The Main Theorem we obtain 

copy(O) =  
)(aut

!

O

n
 = 

 

!

n

n
=  ( 1 −n )! . 

It means that every copy of O on an n-element set Y determinates one cyclic permutation on 
Y.  We have shown that the number of distinct cyclic permutations of n elements is ( 1 −n )! . 
 

The picture on the right shows the case n = 6, i.e. the 
standard cyclic permutation on I[6]. The number of distinct 
cyclic permutations of 6 elements is ( 1 6− )! = 5! = 120.  

 
 

 
Example 3 (Graph Theory).  The number of Hamiltonian paths in the complete graph  
Chosen n ≥  2. The object will be undirected graph O = 〈 I[n], R〉 where R = {{ i, i +1}; i < n}. 
Now, every automorphism f of O is uniquely determined by the image of f(1) which has 2 
different possibilities, namely f(1) = 1 or  f(1) = n. Using The Main Theorem we get 

copy(O) =  
)(aut

!

O

n
 = 

 2

!n
 . 

It means that every copy of O on an n-element set Y determines one Hamiltonian path in the 
complete graph on Y. The number of distinct Hamiltonian paths on n elements is 2!n . 
 

The picture on the right shows the case n = 6. The standard 
path on I[6] has 5 edges forming a ‘chain’. The number of 
distinct Hamiltonian paths on 6 elements  2!6  =  360. 

 
 

 1    2    3    4    5    6 

 1   2    3    4    5    6 

 1    2    3    4    5    6 
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Example 4 (Combinatorics).  The number of regular partitions 
Chosen m ≥  1, and n = 2m. We put J = I[m] and for every j∈ J let jX = { 1 2 −j , 2j}. The 

object will be 2-partition O = 〈 I[n], R〉 where the system R = {{2 j, 1 2 −j }; 1 ≤  j ≤ m} 
consists of m classes of size 2. Every automorphism f of O must preserve the partition classes 
and therefore it determines a bijection f* : J →  J such that for every j∈ J there is f( jX ) = 

)(* jfX (there are 2! = 2 such partial bijections for every j∈ J). It is clear that for each bijection 

g : J →  J there are exactlym2 automorphisms  f  of  O  such that f* = g. Because there are |J|! 
= m! bijections g : J →  J, we conclude that aut(O) = m! · m2  (the Multiplication Counting 
Principle).  Using the Main Theorem we get 

copy(O) =  
)(aut

!

O

n
 = 

  2  ·  ! 

!)2(
 mm

m
 . 

We have derived the formula calculating the number of distinct 2-partitions.  
 

The picture on the right shows the case m = 3 and n = 6 
with the standard 2-partition on I[6]. The number of 

distinct 2-partitions on 6 elements is 
  2  ·  ! 3

!)6(
3 

 = 15.  

 
 

 
Conclusion 

We have given our students a tool which helps them in solving different kinds of 
combinatorial word problems. The main advantage is that the procedures used are standard 
and avoid the need of some special ‘tricks’. Moreover, mastering the technique of 
automorphism counting is a good preparation for understanding the theory of transformation 
groups. 
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